Cause-Specific Cox Regression with Multiple Imputation
CSC_MI.Rd
This function can be utilized to perform Cause-Specific Cox Regression on multiply imputed datasets.
Details
A small convenience function to perform CSC regression on multiply imputed data. It is simply a wrapper around the CSC
function from the riskRegression package, because the usual use of with
is not supported directly. It returns a mira
object, which can be passed to the outcome_model
argument inside of the adjustedcif
function when needed. No pool
method or other functionality is available.
Examples
# not run because it would be too slow
# \donttest{
library(adjustedCurves)
library(survival)
if (requireNamespace("riskRegression") & requireNamespace("mice")) {
library(riskRegression)
library(mice)
# simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)
# introduce random missingness in x1 as example
sim_dat$x1 <- ifelse(runif(n=50) < 0.5, sim_dat$x1, NA)
# perform multiple imputation
mids <- mice::mice(data=sim_dat, method="pmm", m=5, printFlag=0)
# use the function
csc_mods <- CSC_MI(mids=mids,
formula=Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group
)
}
#> Loading required namespace: riskRegression
#> Loading required namespace: mice
#> riskRegression version 2023.12.21
#>
#> Attaching package: ‘mice’
#> The following object is masked from ‘package:stats’:
#>
#> filter
#> The following objects are masked from ‘package:base’:
#>
#> cbind, rbind
# }